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Abstract : In this paper we obtain a new class of quasi bilateral generating functions 

involving the Gegenbauer polynomial uC n

s , Biorthogonal polynomial )(,1 xT nk


  and 

Laguerre )(ZLn

m  from the view point of the Lie-Algebra (i.e. Lie-group) and some known 

bilateral generating functions are also obtained as special cases.   
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INTRODUCTION  

  Biorthogonal polynomial )(,1 xT nk


  in terms of x

k
 by [3] in 1968, where k is a 

positive integer and a relation yn
(k + k-1)

 (x
k
, k) = )(

,1 xT
nk


  where yn

()
 (x ; k) is a 

biorthogonal polynomial in x of degree n as defined by [2]. The following bilateral 

generating function of the biorthogonal polynomial )(
,1 xT
nk


  obtained by [4] and [6]              
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  The aim of this paper is to extend the bilateral generating function of the biorthogonal 

polynomial )(
,1 xT
nk


  involving Laguerre polunomial )(ZLn

m  and Gegenbauer polynomial 

)(uCn

s . Our result can be put in the form of a theorem as follows:  
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Theorem-1 

  If the quasi bilateral generating function exists for the biorthogonal 

polynomial, Gegenbauer polynomial and Laguerre polynomial  
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then the following new general classes of generating functions are hold.   
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  All the special classes of generating functions can be easily deduced by 

values for na and then making use of known quasi bilateral generating functions involving 

biorthogonal polynomial )(
,1 xT
nk


  

 

II. Proof of the Theorem  

 Let us suppose  
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 replace w by wytvj, then we get  
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Now taking the following partial differential operators for the biorthogonal polynomial 

)(
,1 xT
nk


  by [2] 

  yxkk
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yxR kk 
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such as  
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…..(2.2) 

  Moreover the extended form of the group generated by is given by  

exp wR1 f(xk, y) = (1-wy)-(k+k) exp {-wxky/(1-wy)}. f{(xk/(1-wy); y/(1-wy)} 

……(2.3) 

  Again we taking the linear partial differential operator for the Gegennawer polynomial 

)(uC n

s  by [5] as follows:  
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  Similarly the extended form of the groups generated by R2
 is given by  

exp w R2 f(u, v) = (1-2 wv)-s/2 f  )21/(,21/ wvvwvu   

…...(2.5) 

  Again we taking the linear partial differential operator for the Laguerre polynomial )(ZLn

m  

by [1] as follows:  

R3 = t
z
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Such as 
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….. (2.6) 

  The extended form of the group generated by R3 is given by  
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   exp wR3 f(z,t) = exp (-wt) f (z+wt, t)          .…(2.7) 

  Now multiply by exp wR1 exp wR2 exp wR3 on both side of equation (2.1) then we get  

exp wR1 exp wR2 exp wR3 G (xk, 
n, z, wy tv)  

= exp wR1 exp wR2 exp wR3 )()()(
,

0

1 uCyxTwja n

s

nk

nk
n

nk

n








 
nkn

m

nk tzLv )(  

….. (2.8) 

  Now the L.H.S. of equation (2.8) with the help of (2.3), (2.5) and (2.7) we get  
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…..(2.9) 

Again the R.H.S. of equation (2.8) with the help of equation (2.2), (2.4) and (2.6)  
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  equation the equation (2.9) and (2.10) we get equation (2.8) and substituting 

y = t = v = 1 we get equation (1.2)  

 

III. Special case  

  It put m = s = 0 in (2.2) and using  

  C0
nk+q 

(u) = 1)(0  zL rnk  

then we get  
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 Now replace j by j (1-2w). then we get  
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Now put k = 1 in (3.1) and using  

)(),(
,

1
1 xTkxy

nk

kkk

n


  then we set  
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which was derived by [1].   
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